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Methods for automated identi®cation and building of protein-

bound ligands in electron-density maps are described. An

error model of the geometrical features of the molecular

structure of a ligand based on a lattice distribution of

positional parameters is obtained via simulation and is used

for the construction of an approximate likelihood scoring

function. This scoring function combined with a graph-based

search technique provides a ¯exible model-building scheme

and its application shows promising initial results. Several

ligands with sizes ranging from 9 to 44 non-H atoms have been

identi®ed in various X-ray structures and built in an automatic

way using a minimal amount of prior stereochemical knowl-

edge.
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1. Introduction

Automated model-building techniques in protein crystallo-

graphy form an essential component of any hardware and

software pipeline that is aimed at delivering protein crystal

structures with minimum user intervention (e.g. Brunzelle et

al., 2003). Model-building routines such as ARP/wARP

(Perrakis et al., 1999), RESOLVE (Terwilliger, 2003) and

MAID (Levitt, 2001) are able to construct almost complete

protein structures in a fully automated manner (Badger, 2003)

given a set of reasonable phase estimates and X-ray data of

suf®cient resolution. Although the protein part of a structure

is recognized, other compounds, such as DNA, RNA and

ligands, cannot be built fully automatically. The problem of

ligand building is of particular interest both from a theoretical

and a practical point of view. The chemical variety of ligands

bound to proteins is enormous: at the time of writing, more

than 4000 entries are present in the Hetero-compound Infor-

mation Centre (HIC-Up; http://xray.bmc.uu.se/hicup) and

over 2000 ligand dictionary entries are contained in the

REFMAC5/CCP4 monomer library (Vagin et al., 2003;

Collaborative Computational Project, Number 4, 1994).

Finding a means of handling the basic chemical knowledge of

ligands in the interpretation of electron densities at a resolu-

tion lower than atomic resolution and with phase error present

is particularly challenging. The practical interest stems largely

from pharmaceutical companies and large-scale X-ray crys-

tallography facilities that desire to automate drug-discovery

efforts or to build up a general infrastructure for structure

solution. Ligand-building procedures play a central role in the

automation and practical feasibility of high-throughput X-ray

crystallographic screening for lead identi®cation and optimi-

zation, as carried out by, for example, Abbott (Nienaber et al.,

2000) and Astex Technology (Sharff & Jhoti, 2003). Existing

methods for construction of non-protein models are either

based on the use of torsion angles, interatomic distance

matrices or on topological analysis of the electron density. The



methods implemented in XLIGAND (Old®eld, 2001b) or

BLOB (Diller et al., 1999) ®t ligands to the electron density by

varying the torsion angles. XLIGAND performs a shape

matching and requires initial guesses of the location of the

ligand obtained via segmentation of the difference density. A

ligand molecule is placed into the density in several trial

conformations and a local optimization to maximize the ®t to

the electron density is carried out (Old®eld, 2001a). BLOB

utilizes global optimization techniques to ®nd the orientation,

location and conformation of the ligand. An example of a

distance matrix-based interpretation technique is the

pioneering work of Koch (1974) and extensions thereof (Main

& Hull, 1978; Cascarano et al., 1991; Altomare et al., 2002).

These distance matrix-based map-interpretation methods use

iterative procedures for the construction of molecular models

in maps on the basis of known geometrical features and

approximate atomic positions obtained by peak-picking

methods. Recently, distance matrix-based methods have also

been applied to the interpretation of high-resolution protein

electron-density maps (Old®eld, 2002). The interpretation of

electron-density maps via a topological analysis of electron

density additionally invokes other topological features in the

interpretation process such as pits and saddle points (Leherte

et al., 1997; MeneÂndez-VelaÂzquez & GarcõÂa-Granda, 2003).

Although all three methods have their speci®c advantages, we

chose to investigate ligand-building techniques on the basis of

distance matrices because of their close link to the model-

building techniques implemented in ARP/wARP. Further-

more, distance-matrix approaches may allow the construction

of algorithms for building of partially disordered ligands in a

more straightforward way than using torsion angle-based

approach.

Although building of ligand structures in electron density

may seem to be a different problem to building a protein on

the basis of repetitive peptide motifs (Lamzin & Wilson, 1997),

it can be shown that the underlying principles are based on the

same concepts (Bart & Busetti, 1976).

In a crystallographic restrained re®nement, the following

function is optimized by varying the atomic positions {x}:

LL�fxg� � ln�f �chemical sensejfxg�� �P
h

ln�f �Fobs
h jfxg��: �1�

The f(Fobs
h |{x}) term in (1) models the probability distribution

of the X-ray data given the estimated set of atomic positions

{x}. f(chemical sense|{x}) expresses the prior knowledge of the

stereochemistry of the system. In protein crystallography, this

expression is usually modelled by the product of a set of

Gaussian distributions centred on the `ideal' values of

geometrical features such as distances and angles. When

f(Fobs
h |{x}) is also modelled by a Gaussian, (1) results in a

standard least-squares re®nement. Modelling the X-ray part of

(1) by a Rice distribution results in the so-called maximum-

likelihood re®nement (Pannu & Read, 1996; Bricogne, 1997a;

Murshudov et al., 1997).

The approach we adopted for ligand building is related to

the described re®nement example. However, instead of

varying the positional parameters for optimization of the total

log likelihood (LL), we keep them ®xed and the interpretation

in the form of a set of atomic labels is modi®ed to optimize (1).

Furthermore, although we model the prior distribution by a

(weighted) sum of independent log-probabilities, the indivi-

dual probability density functions do not have a Gaussian

form. As is the case for the amplitude part of (1), the prior of

our chemical sense can be derived on the basis of a suitable

error model of the positional parameters. The stereochemical

quality of an interpretation is gauged by the modelled distri-

bution of the geometric features, but the correspondence to

the X-ray data is accounted for in a simpler way. The like-

lihood of an atom has been modelled by a monotonically

increasing function of the density height in order to drive the

interpretation towards high electron density. Owing to the

approximations in the developed function, we will use the

generic term scoring function rather than log-likelihood.

From a wide spectrum of various topological and geo-

metrical descriptors, we only use the information from bonded

atoms (1±2 distances), bonding angles (1±3 distances), the

chirality of the atoms and van der Waals repulsions. Although

a large number of other sources of information, such as

planarity restraints, cis±trans speci®cations, possible intra-

molecular hydrogen-bonding patterns and unfavourable

combinations of speci®c torsion angles are ignored, the

number of geometrical descriptors in combination with the

electron density allows one to obtain a suitable estimate of the

position, orientation and conformation of the ligand.

2. Methods

The following prototype procedure has been developed for

the automated building of ligands in residual electron density.

Firstly, the protein part of a macromolecular model is

subjected to manual or automatic remodelling of side-chain

and or main-chain conformations to overcome ligand-induced

non-isomorphism. This structure is then used to obtain phases

and ®gures of merit and a corresponding difference electron-

density map. An orthogonal grid is then constructed from

which points are selected that are likely to belong to the
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Figure 1
Distribution of distances on a grid given an ideal distance of 1.5 AÊ and a
grid spacing of 0.5 and 0.8 AÊ , respectively.



ligand. The geometrical features from the ligand molecule are

used to construct an error model for the positional parameters

of the ligand atoms. A search algorithm designed to optimize

the constructed scoring function results in ligand-atom names

being assigned to grid points. A geometrized ligand is obtained

and is subsequently subjected to a restraint re®nement of the

ligand±protein complex using REFMAC5 (Murshudov et al.,

1997). The procedure can be iterated to locate other ligands if

they are present.

2.2. Trial atom generation

A difference electron-density map that is supposed to

contain a ligand is parameterized by an orthogonal grid with a

minimum spacing dgrid between two grid points. dgrid is set to

0.5 AÊ , which is linked to the error model used, as will be

explained in x2.3. The orthogonal grid is constructed in such a

way that it covers the complete macromolecule, with an added

border of appropriate size. Crystallographic symmetry is

ignored at this stage. Each grid point is associated with three

parameters: density height, occupancy and cluster number.

The density height is the value of the electron density at the

location of the grid point in the unit cell. The occupancy is

either 0 or 1 and determines whether the grid point is used in

trial-atom generation. The cluster numbers divide the set of

grid points into clusters in which the elements are path-

connected.

The grid points are selected if their electron-density value is

above a certain threshold �thres. The selected grid points are

clustered using an approach that is related to the well known

skeletonization procedures (Greer, 1974; Swanson, 1994).

(i) Set the occupancy of all grid points with an associated

density height larger than �thres equal to 1; set the cluster

number of all grid points to 0.

(iia) Move to the next grid point with an occupancy of 1 that

has a neighbouring grid point with an occupancy equal to zero.

(iib) Flag this grid point indicating `to be removed' unless it

only has neighbours with occupancy 0 or neighbours ¯agged to

be removed or if a removal of this grid point disconnects the

neighbouring grid points.

(iii) Go to (iia) until all grid points have been visited.

(iv) Set occupancies of the `to be removed' grid points to 0;

go to (iia) until no further changes occur.

(v) Assign different cluster numbers to each grid point with

a non-zero occupancy.

This algorithm, known as constrained erosion (Heijmans,

1992), delivers a number of isolated grid points. It can be

shown that the remaining grid points have not been path-

connected given the de®nition of the neighbourhood in step

(ii). In the present implementation, two grid points are de®ned

as neighbours when their distance is smaller than or equal to

31/2dgrid.

The inverse of this algorithm, geodesic reconstruction

(Heijmans, 1992), is applied.

(i) Initialize C to 0.

(ii) C = C + 1

(iii) Move to the next grid point with occupancy equal to 1

and cluster number equal to C.

(iv) Select all neighbours of this grid point with an asso-

ciated density height larger than �thres; set the cluster numbers

and occupancies to C and 1, respectively.

(v) Go to (iii) until no further changes occur.

(vi) Go to (ii) until all clusters are constructed.

Other algorithms can be constructed that would perform

the clustering in a similar fashion.

The number of grid points grouped in a connected cluster is

related to the volume of the cluster of the difference density

which is used as a possible signal-to-noise classi®er. In a

practical implementation, the largest cluster is assigned to the

ligand to be built, or in the case of multiple ligands, the

volume-ordered list of clusters is matched to the list of ligands

ordered by their size.

The density threshold �thres used in the clustering algorithm

is selected on the basis of the sizes of the obtained

clusters.

To reduce the amount of grid points even further, another

selection procedure is carried out that resembles constrained

erosion.

(i) Move to the grid point with the highest density and

occupancy 1.

(ii) Select all grid points within a distance of d� and set their

occupancy to 0.

(iii) Go to (i) until convergence.

Since the height of the electron density is correlated with

the proximity of atoms, this procedure is more likely to

preserve the grid points that are close to the position of ligand

atoms. Choice of the selection radius d� should re¯ect the

bonding distances present in the ligand that is sought and the

choice of the grid spacing dgrid. Setting d� to 1.3 AÊ for a grid

spacing of 0.5 AÊ gives statisfactory results. The grid-based

selection procedure is insensitive to the shape or topological

properties of the electron density around an atom, but has the

disadvantage of generating a large surplus of initial trial atoms.

2.3. The distribution of distances

An error model of the geometric features of the ligand is

needed in the design of a scoring function, as mentioned

above. The positional parameters of the trial atoms are not

continuously distributed as assumed in a free-atom model

(Zwart & Lamzin, 2003, 2004), but follow a discrete so-called

lattice distribution (Abramovicz & Stegun, 1974; Bricogne,

1974). We assume that the best possible interpretation is that

which maps the ligand atoms to their closest neighbours on the

grid. The proposed error model of the positional parameters

thus consists of a rounding-off operation of the positional

parameters of the `true' ligand atoms to the positional para-

meters of the grid. The distribution of interatomic distances

after the rounding-off operation can be obtained via simula-

tion. The sampling of a point distributed on a sphere is carried

out using rejection sampling; the algorithm is outlined in

Appendix A. Inclusion of any uncertainty or `natural spread'

of a given interatomic distance can also be taken into account.
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Empirical distributions, which are clearly non-Gaussian, for

an interatomic distance of 1.5 AÊ and an orthogonal grid

spacing of 0.5 and 0.8 AÊ are shown in Fig. 1. The choice of a

grid spacing of 0.5 AÊ is made to prevent the positional para-

meters of bonded (non-H) atoms being rounded off to the

same grid point. Furthermore, the 0.5 AÊ grid spacing ensures

that the distance of a `true' ligand atom from the nearest grid

point is smaller than or equal to 31/2 � 0.5/2 = 0.43 AÊ . This is a

positional error that should lie well within the radius of

convergence of restrained re®nement procedures for the

ligand.

2.4. The distribution of chirality

The chirality of an atom is de®ned by the sign of the scalar

triple product of the interatomic vectors between the chiral

atom j and three bonded neighbours k, l and m,

Cj � sign�djk � �djl � djm��: �2�

djx denotes the vector between the chiral atom j and a

neighbouring atom x. The order of the bonded atoms is

determined on the basis of the order of appearance in the

input ligand structure, rather than by the standard priority

rules, since it is only required to have an internal standard.

The distribution of chirality of an atom is constructed in a

way similar to the construction of the distance distributions.

Chiral atoms and their bonded neighbours are randomly

oriented and placed on a grid. Generation of random orien-

tations is performed by sampling from a uniform distribution

of points on a four-dimensional unit sphere. These four

numbers can be considered to form a quaternion and are used

to reorient the fragment under consideration (Appendix A).

After rounding off the positional parameters to the nearest

grid points, the chirality is recomputed. An example distri-

bution of the sign of the chiral volume is shown in Fig. 2.

2.5. Repulsion

Another source of information on the internal geometry of

a molecular fragment is van der Waals repulsions. A repulsion

term models our prior knowledge that a 1Ðn distance, with n

larger than 3, is on average larger than an average 1Ð3

distance. Repulsion terms prevent crumpled trial assignments

being recognized as possible molecular fragments. The

repulsion term used has the following form:

W�dja; b� � 1
2 f1� tanh��dÿ a�b�g: �3�

By varying a and b, the location of the in¯ection point and

shape of the repulsion function can be modi®ed, as shown in

Fig. 3. From a probabilistic viewpoint, this function could be

seen as an improper prior (Bernardo & Smith, 2000) on the

1Ðn (n > 3) distances, although its role should be seen more as

an activation function (Bishop, 1995) whose logarithmic form

only gives penalties for interatomic distances involved in short

non-bonded interactions.

2.6. Electron density

One of the most essential sources of experimental infor-

mation is the height of the difference electron density. The

ligand molecule is constructed from the selected grid points

that not only satisfy the above described stereochemical

criteria but also lie in the highest possible density. A mono-

tonic scoring function is used that is similar to that describing

the van der Waals repulsions,

W��js� � 1

2
1� tanh

2

s
�ÿ 2

� �� �
; �4�

where s is the mean electron density for the selected cluster of

the grid points and � is the value of the electron density for

each of the grid points.

2.7. Searching and scoring

A graph of the known ligand is constructed by assuming

that 1Ð2 distances lie between 1.1 and 1.9 AÊ . A graph of the

grid representation can be constructed in a similar way. The

distance limits for the putative 1Ð2 distances are obtained by

transforming the 1Ð2 distance boundaries to a grid by using

the Monte Carlo procedure described in x2.3.
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Figure 2
Conditional distributions of the sign of a chiral volume of 2.77 AÊ 3 and a
grid spacing of 0.5 AÊ .

Figure 3
Repulsion function W(d|a, b) with various choices of location parameter a
and shape parameter b.



The search procedure starts with the generation of a set of

partial interpretations by assigning the label of a given ligand

atom to each grid point within the available cluster. These

partial interpretations are then expanded by addition of one

®xed ligand label. Expansions are generated on the basis of

the constructed graph of the trial atoms, taking into account

constraints dictated by the graph of the ideal ligand, the graph

on the trial atoms and the available partial interpretation.

Each expanded interpretation is scored, but only Nstore partial

interpretations with the best scores are stored. When all

possible single-atom expansions have been tried, the stored

partial interpretations are used for further expansions until

completion of the ligand. The search procedure is illustrated in

Fig. 4. We denote the order in which speci®c atoms of the

ligand are assigned to the grid points as the expansion order.

By default, the ®rst atom to be assigned is that with the largest

number of bonded neighbouring atoms. The order in which

other atoms are `attached' to the partial interpretation

depends on the amount of geometrical information to be

gained by the addition of this atom. The larger the amount of

geometrical information available on a partial structure, the

easier it is to recognize it as a correct fragment. For this

reason, atoms are added to a partial structure in the order that

provides the maximum expected amount of information in the

subsequently generated structure. Conceptually, this proce-

dure should minimize the chances of a correct interpretation

falling outside the Nstore best partial interpretation.

The partial interpretations are scored as follows:

Q�gridjligand� � wprior

P
m

ln�Pprior�dobs
m jdtar

m ��

� wc

P
n

ln�PC�Cobs
n jCtar

n ��

� wrep

P
o

ln�W�dobs
o ja; b��

� wdens

P
j

ln�W��jjs��: �5�

Pprior(dobs
m jdtar

m ) denotes the probability of the observed

distance given the assigned target distance. PC(Cobs
n jCtar

n ) gives

the probability of the observed chirality given the target

chirality. These distributions are obtained as described in x2.3

and x2.4. W(dobs
o |a, b) denotes the repulsion terms discussed in

x2.5. The W(�j|s) term accounts for the density values. The

multipliers wprior, wc, wrep and wdens are relative weights for the

contributions of the four features.

Global optimization algorithms such as simulated annealing

(Kirkpatrick et al., 1983) and the cross-entropy method

(Rubinstein, 1999) have been tried as an alternative to the

outlined optimization procedure, but seemed to lack the ease

of incorporating geometrical constraints dictated by the

connectivity matrix of the search and target graphs during

random-search procedures. However, preliminary imple-

mentations of these algorithms did show successes, but

required a considerably longer time and ®ne-tuning of para-

meters in order to converge to the correct solution.

2.8. Geometrization

Once the grid points have been assigned to the ligand

atoms, the ligand model is ®t to the density and is geometrized

using the 1Ð2 and 1Ð3 distance restraints. The target

deviations from the bonded and angle-bonded distances are

set to 0.02 and 0.04 AÊ , respectively. Least-squares minimiza-

tion is carried out using ®rst-order derivatives and the

diagonal approximation of the normal matrix, with a formu-

lation similar to that described by Agarwal (1978).

3. Results

A number of tests have been carried out on moderate-size

ligands using data obtained from the PDB (Bernstein et al.,

1977; Berman et al., 2000). The parameters a and b in (3) were

set to 2.5 and 2.0, respectively. The weights wprior, wc, wrep and

wdens were set to 0.7, 10, 12 and 6, respectively. The number of

putative 1Ð2 distances within the selected set of grid atoms is

obtained by constructing a graph on the selected grid points
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Figure 4
Flowchart of the search procedure. See text for details.

Table 1
Data-set characteristics.

PDB
code

dmin

(AÊ )
BWilson

(AÊ 2) Ligand
Bligand²
(AÊ 2)

Non-H
atoms

R.m.s.d.³
(AÊ )

CPU for G4
Mac OSX
1 GHz (min)

1ee2 1.5 15 NADH 11 44 0.09 27
Cholic acid 16 29 0.09 5

1obd 1.4 14 ATP 23 31 0.07 7
AMP 32 23 § §

1o2d 2.2 38 Propamidine 34 23 § 7
1a28 1.8 24 Progesterone 25 23 0.17 2
1cbs 1.8 13 Retinoic acid 13 22 0.22 2
1ld8 1.8 18 FDP} 17 24 § 12

IC49²² 19 33 0.28 10
Sucrose 31 23 § §

1ok4 2.1 19 DHAP³³ 17 9 0.30 5

² Average B value of the ligand atoms. ³ Root-mean-square displacement from the
deposited structure after restrained re®nement of the protein±ligand complex. § See
text. } Farnesyldiphosphate. ²² Inhibitor compound 49. ³³ Dihydroxyacetone
phosphate



with the computed distance limits (x2.7). The maximum

number of partial structures stored during each expansion

cycle was ®ve times the number of putative 1Ð2 neighbours

observed in the set of trial atoms. The characteristics of the

structures used and the X-ray data sets are summarized in

Table 1. The procedure has been run with the speci®ed

parameters unless stated otherwise. Electron-density thresh-

olds during the building were determined by the procedure

outlined in x2.1. By default, the interpretation with the highest

score has been used to validate the procedure. The results for

all the test structures are also summarized in Table 1. Detailed

descriptions of the building for each

case are given in the following subsec-

tions.

3.1. Cholic acid and NADH

The X-ray data and dimeric atomic

model of SS-LADH (PDB code 1ee2;

Adolph et al., 2000) contains two cholic

acid molecules, two NADH molecules,

2 � 374 residues and approximately

1000 water molecules. Phases obtained

from a rigid-body re®nement of the

protein part of the structure have been

used as a starting point for the building

of cholic acid and NADH. Cluster

construction reveals four clusters of

connected density with a volume larger

than 80 AÊ 3. The clusters with the

approximate volumes of 150 AÊ 3 were

interpreted as NADH and the clusters

with volumes around 85 AÊ 3 as possible

cholic acids. Fig. 5 shows the initial

difference density with the placed grid

atoms and the model after re®nement

with REFMAC5 for one of the the

cholic acid clusters. The r.m.s.d. (root-

mean-square displacement) of the built

model to the deposited model is 0.30 AÊ

after geometrization and 0.09 AÊ after

restrained re®nement of the protein±

ligand complex with REFMAC5.

The building of NADH resulted in a

structure with an r.m.s.d. of 0.11 AÊ from

the deposited coordinates (Fig. 5). In

order to prevent the algorithm

discarding correct partial interpreta-

tions during the early stages of the

building, the number of partial expan-

sion stored during the iterative exten-

sion had to be enlarged by a factor of

four from the default value.

3.2. ATP and AMP

The atomic model of saicar synthe-

tase (PDB code 1obd; Levdikov et al.,

1998) contains AMP and ATP. Because of the relatively large

amount of noise in the difference electron density, the

described clustering procedure was unable to determine the

locations of the ligands within a reasonable amount of time.

For this reason, the positions of the ATP and AMP were used

in the cluster selection and assignment. The building and

subsequent re®nement of ATP resulted in a structure

matching the deposited coordinates (r.m.s.d. = 0.09 AÊ ; Fig. 6).

Building of AMP was unsuccessful owing to the ill-de®ned/

absent difference density for the phosphate and sugar moiety.

The deposited AMP structure has an occupancy of 0.5. A
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Figure 5
Trial atoms (left) and re®ned interpretations (right) of cholic acid (a) and NADH (b) in the original
difference density.



Wilson plot of the deposited structure factors and a comple-

teness analysis of the X-ray data indicates that about 15% of

the strongest re¯ections around 3.0 AÊ resolution are missing.

This could be a reason for the relatively noisy difference map

and the subsequent unsuccessful building of AMP.

3.3. Propamidine

The location of a propamidine molecule in a double-

stranded DNA structure (PDB code 1o2d; Schwarzenbacher et

al., 2004) has been determined with the default parameters of

the described clustering algorithm using phases from rigid-

body re®nement of the non-ligand part of the atomic model.

Interpretation of the difference density and subsequent

re®nement resulted in the placement of the ligand with a

different conformation compared with the deposited structure

(Fig. 7). In the same ®gure, the best six geometrized inter-

pretations are shown. The relatively weak density of part of

the propamidine molecule possibly explains the difference

between the deposited and automatically built models.

3.4. Progesterone

The position of the steroid in a human progesterone

receptor (PDB code 1a28; Williams & Sigler, 1998) was

located using default parameters. The built and deposited

model differ in the orientation of the keto group (Fig. 8). The

interpretation that is consistent with the deposited crystal

structure has a slightly lower score but shows more favourable

protein contacts than the interpretation with the ¯ipped keto

group. These interactions are currently not taken into account

in our scoring function. The r.m.s.d. of the built and re®ned
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Figure 6
Difference density with trial atoms for ATP (a), re®ned interpretation in the original difference density (b) and the density after re®nement (c).

Figure 7
Top 6 interpretations of propamidine density (a). The best interpretation
(light grey) and the deposited structure (dark grey) are shown in (b).



model from the deposited coordinates is 0.17 AÊ . Inclusion of

the ¯ipped keto group increases the r.m.s.d. to 0.29 AÊ .

3.5. Retinoic acid

The retinoic acid in the difference electron density of a

retinoic acid transport protein (PDB code 1cbs; Kleywegt et

al., 1994) was located and built using

default parameters (Fig. 9). The r.m.s.d.

of the build model to the deposited

model was 0.22 AÊ .

3.6. Farnesyldiphosphate (FDP),
inhibitor compound 49 (IC49) and
sucrose

Location of the ligands FDP, IC49

and sucrose in the difference density of

human farnesyltransferase (PDB code

1ld8; Leahy et al., 1992) was carried out

as follows. The largest three difference

density clusters have been assigned to

the individual ligands on the basis of the

cluster volumes. Once one ligand had

been built, the protein±ligand complex

was re-re®ned and the new density map

was subsequently used to build the

remaining ligands. Owing to the size of

the ligands, the number of intermediate

partial interpretations was increased by a factor of two.

Whereas IC49 was built and re®ned to an r.m.s.d. of 0.28 AÊ ,

FDP was built in a cis rather than trans conformation

compared with the deposited structure (Fig. 10). Attempts to

build sucrose failed under various settings. This is attributed to

the fact that the ligand has a high apparent symmetry, resulting

in a high probability that the interpretation process does not

retain the correct partial structure after each iteration and

converges to false minima.

3.7. Dihydroxyacetone phosphate (DHAP)

The location of the DHAP molecule in the difference map

of an aldolase structure (PDB code 1ok4; Lorentzen et al.,

2003) was determined using the clustering algorithm around

the residues where the ligand was known to bind a priori. The

re®ned interpretation is shown in Fig. 11. Inclusion of protein±

ligand interactions would have made the interpretation easier,

as DHAP is covalently bound to the protein.

4. Discussion and conclusions

The modelling of the distribution of distances via a margin-

alization of a lattice distribution proved to be an adequate tool

in modelling prior geometrical knowledge in grid-based

model-building routines. The resulting approximate distribu-

tions can be fairly quickly obtained via Monte Carlo simula-

tions. Approximate distributions of relative complex

quantities, such as the distribution of the sign of the chiral

volume of an atom, can also be obtained using simulations in a

straightforward way. It must be noted that the constructed

error model on the positional parameters is an approximation.

The interatomic distances are not independent and correla-

tions should in principle be taken into account. If ef®cient

ways of storing and handling multidimensional distributions of

geometrical features can be implemented, one could attempt
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Figure 8
Difference density with trial positions (a), non-geometrized interpretation (b) and deposited
structure of progesterone (c). * denotes the position of the keto oxygen that is different in the
interpretation and deposited structures.

Figure 9
Difference density with trial positions (a) and re®ned interpretation of
retinoic acid (b).



to obtain the joint probability distribution of all of them for

the whole search molecule. Furthermore, the grid-point

selection algorithm designed to eliminate atoms with low

density values affects the possible set of distances between

grid points. This set of distances may have a distribution that is

different from that constructed in the simulations and prob-

ably depends on the spatial distribution of density heights

within the cluster. However, the designed classi®er proved to

be good enough to recognize the correct solution. A similar

situation is present for handling the available prior knowledge

which is limited to 1Ð2 and 1Ð3 distances, chiral signs and

repulsions. Even with this limited amount of information one

is able to recognize complex models in difference density.

Additional information, such as planarity restraints, prior 1±4

distance distributions and ligand±protein interactions, will

most likely enhance the performance of the recognition

process.

The models constructed on the grid are close enough to

their correct positions that REFMAC5 was able to straight-

forwardly re®ne the protein±ligand complex. Combining the

geometrization with a real-space ®t to the electron density has

further enhanced the interpretation process.

As seen from the progesterone example and, to a certain

extent, the DHAP example, internal ligand geometric infor-

mation alone is not always suf®cient to interpret the difference

density. Inclusion of protein±ligand contacts in the decision-

making process would help to resolve possible ambiguities,

prevent chemically unreasonable contacts between protein

and ligand atoms and could possibly limit the search space. A

similar approach would also be useful for building structure

with internal repeats, such as glycosylation sites. If in the initial

stage the sugar backbone can be ®tted, subsequent placement

of the (carbon) oxygen groups can be carried out using

restraints on the parts that are already present. Ideally, the

building procedure should be able to identify these modula-

rities automatically and use them to enhance the speed and

performance of the recognition process.

The search algorithm is able to build ligands in a difference

electron density, based on the proposed scoring function. A

present limitation of the software may be its speed: most

ligands were build in approximately 10 min, whereas ATP

took 15 min and NADH about half an hour. In future

implementations, the building algorithm will be optimized for

CPU ef®ciency. An essential part of future development will

be the implementation of ef®cient mechanisms for the deci-

sion whether an addition of an atom or set of atoms to the

available partial structure results in a better description of the

observed difference electron density. This will facilitate the

process further, also enabling the construction of partially

disordered ligands, such the AMP example in x3.2, to be

carried out automatically.

The ligand building routine described has been incorpo-

rated into version 6.1 of the ARP/wARP suite, which was

introduced in July 2004.

APPENDIX A
Sphere and hypersphere point picking

Uniform sampling of points on a sphere with a unit radius is

carried out using a method developed by Marsagalia (1972)

that consists of sampling two random numbers, A and B,

distributed independently and uniformly on (ÿ1, 1). Pairs of

(A, B) for which A2 + B2 < 1 can be used to construct a vector

(x, y, z) that is distributed uniformly on a sphere,

x � 2A�1ÿ A2 ÿ B2�1=2; �6�
y � 2B�1ÿ A2 ÿ B2�1=2; �7�
z � 1ÿ 2�A2 � B2�: �8�

Sampling points (a0, a1, a2, a3) on a four-dimensional sphere

with unit radius can be carried out in a similar way. Four

random numbers (A, B, C, D) are drawn independently from a

uniform distribution on (ÿ1, 1). Random numbers for which
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Figure 11
Difference density with trial positions (a) and re®ned interpretation
overlaid on the correct dihydroxyacetone phosphate model (b).

Figure 10
Difference densities and re®ned interpretations for IC49 (a) and an
overlay of the interpretation and deposited FDP model (b). * marks the
incorrectly built part of FDP.



the pairs (A, B) and (C, D) satisfy A2 + B2 < 1 and C2 + D2 < 1

are used in the following transformation

a0 � A; �9�
a1 � B; �10�

a2 � C
1ÿ A2 ÿ B2

C2 �D2

� �
; �11�

a3 � D
1ÿ A2 ÿ B2

C2 �D2

� �
: �12�

The vector (a0, a1, a2, a3) is then uniformly distributed on a

four-dimensional sphere with radius 1. This vector can be

considered as a quaternion,

q � a0 � a1i� a2j� a3k �13�
and can be used to reorient a molecular fragment (Weisstein,

1999). More ef®cient sampling methods based on the corre-

spondence of the rotation group SO(3) and a four-dimensional

sphere are described elsewhere, e.g. by Bricogne (1997b).

The authors would like to thank R. J. Morris and A.

Perrakis for stimulating discussions. PHZ thanks K. Cowtan

for his help with the use of the Clipper libraries and the EMBL

for a PhD fellowship.

References

Abramovicz, M. & Stegun, I. A. (1974). Handbook of Mathematical
Functions. New York: Dover Publications Inc.

Adolph, H.-W., Zwart, P., Meijers, R., Hubatsch, I., Kiefer, M.,
Lamzin, V. S. & Cedergren-Zeppezauer, E. (2000). Biochemistry,
39, 12885±12897.

Agarwal, R. (1978). Acta Cryst. A34, 791±809.
Altomare, A., Giacovazzo, C., Ianigro, M., Moliterni, A. G. G. &

Rizzi, R. (2002). J. Appl. Cryst. 35, 21±27.
Badger, J. (2003). Acta Cryst. D59, 823±827.
Bart, J. C. J. & Busetti, A. (1976). Acta Cryst. A32, 927±933.
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N.,

Weissig, H., Shindyalov, I. & Bourne, P. E. (2000). Nucleic Acids
Res. 28, 235±242.

Bernardo, J. M. & Smith, A. F. M. (2000). Bayesian Theory. New
York: Wiley.

Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F. Jr, Brice,
M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M.
(1977). J. Mol. Biol. 112, 535±542.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition.
Oxford University Press.

Bricogne, G. (1974). Acta Cryst. A30, 395±405.
Bricogne, G. (1997a). Methods Enzymol. 276, 361±423.
Bricogne, G. (1997b). Methods Enzymol. 276, 424±449.

Brunzelle, J. S., Shafaee, P., Yang, X., Weigand, S., Ren, Z. &
Anderson, W. F. (2003). Acta Cryst. D59, 1138±1144.

Cascarano, G., Giacovazzo, C., Camalli, M., Spagna, R. & Watkin, D. J.
(1991). Acta Cryst. A47, 373±381.

Collaborative Computational Project, Number 4 (1994). Acta Cryst.
D50, 760±763.

Diller, D., Pohl, E., Redinbo, M., Hovey, B. & Hol, W. (1999).
Proteins, 36, 512±525.

Greer, J. (1974). J. Mol. Biol. 82, 279±301.
Heijmans, H. J. A. M. (1992). Nieuw Arch. Wisk. (4), 10, 237±276.
Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983). Science, 220, 671±

680.
Kleywegt, G. J., Bergfors, T., Senn, H., Le Motte, P., Gsell, B., Shudo,

K. & Jones, T. A. (1994). Structure, 2, 1241±1258.
Koch, M. H. J. (1974). Acta Cryst. A30, 67±70.
Lamzin, V. & Wilson, K. (1997). Methods Enzymol. 277, 269±305.
Leahy, D. J., Axel, R. & Hendrickson, W. A. (1992). Cell, 68, 1145±

1162.
Leherte, L., Glasgow, J. I., Baxter, K., Steeg, E. & Fortier, S. (1997). J.

Artif. Intell. Res. 7, 125±159.
Levdikov, V. M., Barynin, V. V., Grebenko, A. I., Melik-Adamyan,

W. R., Lamzin, V. S. & Wilson, K. S. (1998). Structure, 6, 363±376.
Levitt, D. G. (2001). Acta Cryst. D57, 1013±1019.
Lorentzen, E., Pohl, E., Zwart, P., Stark, A., Russell, R., Knura, T.,

Hensel, R. & Siebers, B. (2003). J. Biol. Chem. 278, 47253±47260.
Main, P. & Hull, S. E. (1978). Acta Cryst. A34, 353±361.
Marsaglia, G. (1972). Ann. Math. Stat. 43, 645±646.
MeneÂndez-VelaÂzquez, A. & GarcõÂa-Granda, S. (2003). J. Appl. Cryst.

36, 193±205.
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Acta Cryst.

D53, 240±255.
Nienaber, V. L., Richardson, P. L., Klighofer, V., Bouska, J. J.,

Giranda, V. L. & Greer, J. (2000). Nature Biotechnol. 18, 1105±1108.
Old®eld, T. J. (2001a). Acta Cryst. D57, 82±94.
Old®eld, T. J. (2001b). Acta Cryst. D57, 696±705.
Old®eld, T. J. (2002). Acta Cryst. D58, 963±967.
Pannu, N. S. & Read, R. J. (1996). Acta Cryst. A52, 659±668.
Perrakis, A., Morris, R. J. & Lamzin, V. S. (1999). Nature Struct. Biol.

6, 458±463.
Rubinstein, R. (1999). Methods Comput. Appl. Prob. 1, 127±190.
Schwarzenbacher, R. et al. (2004). Proteins, 54, 174±177.
Sharff, A. & Jhoti, H. (2003). Curr. Opin. Chem. Biol. 7, 340±345.
Swanson, S. M. (1994). Acta Cryst. D50, 695±708.
Terwilliger, T. C. (2003). Acta Cryst. D59, 38±44.
Vagin, A., Murshudov, G., Dodson, E., Henrick, K., Richelle, J. &

Wodak, S. (2003). MONLIB, a Multi-purpose Dictionary for
Macromolecules. Unpublished results.

Weisstein, E. (1999). CRC Concise Encyclopedia of Mathematics.
New York: Chapman & Hall/CRC Press.

Williams, S. P. & Sigler, P. B. (1998). Nature (London), 393, 392±
396.

Zwart, P. H. & Lamzin, V. S. (2003). Acta Cryst. D59, 2104±
2113.

Zwart, P. H. & Lamzin, V. S. (2004). Acta Cryst. D60, 220±226.

research papers

Acta Cryst. (2004). D60, 2230±2239 Zwart et al. � Modelling bound ligands 2239


